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OBJECTIVES

This 1ist is obvious for a symposium on transonic unsteady aerody-

namics. The last three are the most difficult to achieve.
is in its usual state of affairs.
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ORIGINAL PAGE IS
APPROACH OF POOR QUALITY

The Euler code is one we've used extensively for some time now.
The boundary~layer code solves the three~dimensional, compressible, un-
steady, mean flow kinetic energy integral boundary-layer equations in
the direct mode. Inviscid-viscous coupling is handled using porosity
boundary conditions.
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OUTLINE OF RESULTS

This slide outlines the order of the results to follow. Steady-state
results are considered first to validate the basic inviscid and viscous
codes, followed by the unsteady results that have been obtained to date.

» STEADY~STATE
* 3-D EULER, 2-D BOUNDARY-LAYER (WING~FUSELAGE)

 3-D EULER, 3-D BOUNDARY-LAYER (WING)

* UNSTEADY
* 3-D EULER, 3~D BOUNDARY-LAYER (WING)
» 3-D EULER, 3-D BOUNDARY-LAYER (QUASI-STEADY AIRFOIL)

« 3-D NAVIER-STOKES (AIRFOIL)
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ORIGINAL PAGE |5
OF POOR QUALITY

L wws-Zimensional steady version of the turbulent boundary-layer
code was used with the three-dimensional Euler code in a strip~theory
fashion to compute the flow about the supercritical Pathfinder wing with
fuselage. The results are shown in Figure 1. These results are in-
cluded simply to illustrate the type of results that might be obtained
using the boundary-layer in a strip-theory fashion. The results were
obtained by Dr. Keith Koenig, Mississippi State, under a NASA Langley
grant.

X/c °

Figure la. Section pressure distribution, M»=0.7, a=2°, Re=5.3*106;
E = experiment, 13.,1% span; ——— , viscous, 15% span.
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Figure 1b. K, 29.27%; calculation, 25%.
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ORIGINAL PAGE IS
OF POOR QUALITY

Figure lc.
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E, 43.27; calculation, 45%.
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Figure 1d. E, 64%, calculation, 65%.

ORIGINAL PAGE IS
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Figure le.

E, 84%; calculation, 847%.
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Figure 1f. E, 96.1%; calculation, 95%.



A steady-state interactive solution using the three-dimensional
unsteady Euler and boundary-layer codes was obtained for the ONERA M6
wing. The streamwise momentum thickness and shape factor distributions
at about fifty percent semi-span location are compared in Figure 2 with
the calculations of Schmitt, Destarac, and Chavmet. An isolated experi-
mental data point at sixty percent chord location is also shown.
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Fig. 2a. Boundary layer characteristics
on the upper surface of the
ONERA M6 wing. M=0.84,

Re_=11.7x10%, a=3°.
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Fig. 2b. Boundary layer characteristics

on the lower surface of the ONERA

M6 wing. M=0.84, Rec=11.7x106,

a=3°.



Surface pressure distributions for the same solution as shown in
Figure 2 are compared in Figure 3 with the computations of Schmitt, et '
al., and experimental data at about forty-five percent semi-span loca-

tion. The computations of Schmitt

used potential flow and a

steady state three-dimensional integral boundary-layer code.

viscous 0.45

L inviscid 0.45
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Fig. 3. Steady pressure distribution on the ONERA M6 Wing. M=0.84, a=3°
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A complete three-dimensional unsteady viscous-inviscid interaction
solution was obtained on a relatively coarse grid for the ONERA M6 wing
as shown in Figures Y4 through 6. The wing was oscillated in pitch % 2
degrees (mean angle of attack was 0°) about the mid~chord at a reduced
frequency of 0.3. For this case there was little viscous effect. Fig-
ure Y4 shows unsteady viscous and inviscid surface pressure distributions
at forty-five percent semi~span location. It is a snapshot at a =
1.94¢°,

viscous
e”L. m————— inviscid

9.59

Fig. 4. Unsteady pressure distributions on the ONERA
M6 wing at M=0.84, k=0.3, a=1.94°, and y/b=0.45,
Pitch oscillation about mid-chord -2° < a < 2°.

ORIGINAL PACE IS
OF POOR QUALITY
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ORIGINAL PAGE IS
OF POOR QUALITY
Figure 5 shows the phase shift of the viscous solution described on

Figure 4.
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Fig. 5. Phase shift of the ONERA M6 wing lift coefficient
(viscous solution). Pitch oscillation.
M=0.84, k=0.3, -2° < a < 2°,
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Figure 6 shows the viscous and inviscid results of drag coefficient
and number of supersonic cells for the computation described on Figure
u.
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Fig. 6. Drag coefficient and number of supersonic cells. ONERA M6 wing pitch oscillation.
M=0.84, k=0.3, -2° < o < 2°.
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Figure 7 is a plot of normalized l1ift and drag verses p%riod for an
NACA 0012 airfoil at M, = 0.776, Reynolds number of 23.7 x 10-, oscillat-
ing + 1 degree in pitch about the quarter-chord point at a reduced fre-
quency of 0.3 using quasi-steady interaction (that is, unsteady Euler
calculation with steady-state boundary-layer calculation).

1.5
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Fig. 7 Quasi-steady interaction for an NACA 0012 airfoil oscillating
in pitch * 1 degreg about the quarter-chord point for M = 0.776
and Re = 23.7 x 10 at a reduced frequency of 0.3.
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Figure 8 is a comparison of absolute values of 1ift verses period
resulting from the quasi-steady interaction solution described in Figure
7 and an unsteady Navier-Stokes solution for the same conditions. The
Navier-Stokes solution is courtesy of Bruce Simpson, Eglin Air Force
Base, FL.
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Fig. 8 Lift coefficients for quasi-steady interaction and unsteady Navier-
Stokes for an NACA 0012 airfoil oscillating in pitch = 1 degreg
about the quarter-~chord point for M = 0.776 and Re = 23.7 x 10
at a reduced frequency at 0.3.



CONCLUSIONS

This slide compares some of the advantages and disadvantages of
using the Euler and boundary-layer equations for investigating unsteady
viscous—-inviscid interaction.

ADVANTAGES DISADVANTAGES
ENGINEERING ANSWERS . ﬁUCH.MORE DIFFICULT
FASTER . SEPARATION (UNSTEADY)
LESS STORAGE . DEVOTED LABOR (PARTICU-
LAR EXPERTISE)
GRIDDING . COUPLING
. ROBUST

FEWER PEOPLE WORKING THE
PROBLEM
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